
Chapitre 6

Transitions de phase

6.1 Stabilité des potentiels thermodynamiques

Afin de déterminer les critères de stabilité locale des potentiels ther-
modynamiques du gaz parfait, on se base sur les expressions de la température,
de la pression et du volume établies dans l’exercice 4.7. Les expressions T (S, V )
et T (S, p) de la température d’un gaz parfait sont,

T (S, V ) = T (S, V0)

(
V

V0

)− 1
c

T (S, p) = T (S, p0)

(
p

p0

) 1
c+1

et les expressions de la pression et du volume d’un gaz parfait sont,

p (S, V ) = p (S0, V ) exp

(
S − S0

cNR

)
V (T, p) =

NRT

p

où le volume V0, la pression p0 et l’entropie S0 sont des constantes.

1) Montrer que la courbure locale de l’énergie interne est positive (6.23),

∂2U (S, V )

∂S2

∂2U (S, V )

∂V 2
−
(
∂2U (S, V )

∂S ∂V

)2

> 0

2) Montrer que la courbure locale de l’énergie libre est négative (6.41),

∂2F (T, V )

∂T 2

∂2F (T, V )

∂V 2
−
(
∂2F (T, V )

∂T ∂V

)2

< 0

3) Montrer que la courbure locale de l’enthalpie est négative (6.44),

∂2H (S, p)

∂S2

∂2H (S, p)

∂p2
−
(
∂2H (S, p)

∂S ∂p

)2

< 0
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4) Montrer que la courbure locale de l’énergie libre de Gibbs est positive (6.47),

∂2G (T, p)

∂T 2

∂2G (T, p)

∂p2
−
(
∂2G (T, p)

∂T ∂p

)2

> 0

6.1 Solution

1) Compte tenu de la température (2.16) et de la capacité thermique iso-
chore (5.10) pour un gaz parfait (5.75), la courbure locale de l’énergie
interne par rapport à l’entropie s’écrit,

∂2U (S, V )

∂S2
=
∂T (S, V )

∂S
=
T (S, V )

CV
=
T (S, V )

cNR
> 0

Compte tenu de la pression (2.17) et du coefficient de compressibilité isen-
tropique (5.52) pour un gaz parfait (5.88), la courbure locale de l’énergie
interne par rapport au volume s’écrit,

∂2U (S, V )

∂V 2
= − ∂p (S, V )

∂V
=

1

χS V
=
c+ 1

c

p (S, V )

V
> 0

Ainsi, à l’aide de l’équation d’état du gaz parfait (5.66),

p (S, V )V = NRT (S, V )

le produit des courbures locales de l’énergie interne par rapport à l’entropie
et au volume s’écrit,

∂2U (S, V )

∂S2

∂2U (S, V )

∂V 2
=
c+ 1

c2
p (S, V )

NRV
T (S, V ) =

c+ 1

c2
T 2 (S, V )

V 2

Compte tenu de la température (2.16), la dérivée partielle seconde de l’éner-
gie interne par rapport à l’entropie et au volume s’écrit,

∂2U (S, V )

∂S ∂V
=

∂

∂V

(
∂U (S, V )

∂S

)
=
∂T (S, V )

∂V
=

∂

∂V

(
T (S, V0)

(
V

V0

)− 1
c

)

et se réduit à,

∂2U (S, V )

∂S ∂V
= − 1

c

1

V

(
T (S, V0)

(
V

V0

)− 1
c

)
= − 1

c

T (S, V )

V

Par conséquent, l’énergie interne est une fonction convexe de l’entropie et
du volume,

∂2U (S, V )

∂S2

∂2U (S, V )

∂V 2
−
(
∂2U (S, V )

∂S ∂V

)2

=
1

c

T 2 (S, V )

V 2
> 0
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2) Compte tenu de l’entropie (4.25) et de la capacité thermique isochore (5.10)
pour un gaz parfait (5.75), la courbure locale de l’énergie libre par rapport
à la température s’écrit,

∂2F (T, V )

∂T 2
= − ∂S (T, V )

∂T
= − CV

T
= − cNR

T
< 0

Compte tenu de la pression (4.26) et du coefficient de compressibilité iso-
therme (5.12) pour un gaz parfait (5.80), la courbure locale de l’énergie
libre par rapport au volume s’écrit,

∂2F (T, V )

∂V 2
= − ∂p (T, V )

∂V
=

1

χT V
=
p (T, V )

V
> 0

Ainsi, à l’aide de l’équation d’état du gaz parfait (5.66),

p (T, V )V = NRT

le produit des courbures locales de l’énergie libre par rapport à la tempé-
rature et au volume s’écrit,

∂F 2 (T, V )

∂T 2

∂F 2 (F, V )

∂V 2
= − cNR

T

p (T, V )

V
= − c p

2 (T, V )

T 2

Compte tenu de la pression (4.26), la dérivée partielle seconde de l’énergie
libre par rapport à l’entropie et au volume s’écrit,

∂2F (T, V )

∂T ∂V
= − ∂

∂T

(
∂F (T, V )

∂V

)
= − ∂p (T, V )

∂T
= − p (T, V )

T

Par conséquent, l’énergie libre est une fonction concave de la température
et convexe du volume,

∂2F (T, V )

∂T 2

∂2F (T, V )

∂V 2
−
(
∂2F (T, V )

∂T ∂V

)2

= − (c+ 1)
p2 (T, V )

T 2
< 0

3) Compte tenu de la température (4.33) et de la capacité thermique iso-
bare (5.22) pour un gaz parfait (5.83), la courbure locale de l’enthalpie par
rapport à l’entropie s’écrit,

∂2H (S, p)

∂S2
=
∂T (S, p)

∂S
=
T (S, p)

Cp
=

T (S, p)

(c+ 1)NR
> 0

Compte tenu du volume (4.34) et du coefficient de compressibilité isentro-
pique (5.52) pour un gaz parfait (5.88), la courbure locale de l’enthalpie
par rapport à la pression s’écrit,

∂2H (S, p)

∂p2
=
∂V (S, p)

∂p
= −χS V = − c

c+ 1

V (S, p)

p
< 0

Ainsi, à l’aide de l’équation d’état du gaz parfait (5.66),

p V (S, p) = NRT (S, p)
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le produit des courbures locales de l’enthalpie par rapport à l’entropie et à
la pression s’écrit,

∂2H (S, p)

∂S2

∂2H (S, p)

∂p2
= − T (S, p)

(c+ 1)NR

cV (S, p)

(c+ 1) p
= − c

(c+ 1)
2

T 2 (S, p)

p2

Compte tenu de la température (4.33), la dérivée partielle seconde de l’en-
thalpie par rapport à l’entropie et à la pression s’écrit,

∂2H (S, p)

∂S ∂p
=

∂

∂p

(
∂H (S, p)

∂S

)
=
∂T (S, p)

∂p
=

∂

∂p

(
T (S, p0)

(
p

p0

) 1
c+1

)
et se réduit à,

∂2H (S, p)

∂S ∂p
=

1

c+ 1

1

p

(
T (S, p0)

(
p

p0

) 1
c+1

)
=

1

c+ 1

T (S, p)

p

Par conséquent, l’enthalpie est une fonction convexe de l’entropie et concave
de la pression,

∂2H (S, p)

∂S2

∂2H (S, p)

∂p2
−
(
∂2H (S, p)

∂S ∂p

)2

= − 1

c+ 1

T 2 (S, p)

p2
< 0

4) Compte tenu de l’entropie (4.41) et de la capacité thermique isobare (5.22)
pour un gaz parfait (5.83), la courbure locale de l’énergie libre de Gibbs
par rapport à la température s’écrit,

∂2G (T, p)

∂T 2
= − ∂S (T, p)

∂T
= − Cp

T
= − (c+ 1)NR

T
< 0

Compte tenu du volume (4.42) et du coefficient de compressibilité iso-
therme (5.12) pour un gaz parfait (5.80), la courbure locale de l’énergie
libre de Gibbs par rapport à la pression s’écrit,

∂2G (T, p)

∂p2
=
∂V (T, p)

∂p
= −χT V = − V (T, p)

p
< 0

Ainsi, à l’aide de l’équation d’état du gaz parfait (5.66),

p V (T, p) = NRT

le produit des courbures locales de l’énergie libre de Gibbs par rapport à
la température et à la pression s’écrit,

∂2G (T, p)

∂T 2

∂2G (T, p)

∂p2
=

(c+ 1)NR

T

V (T, p)

p
= (c+ 1)

V 2 (T, p)

T 2

Compte tenu du volume (4.42), la dérivée partielle seconde de l’énergie libre
de Gibbs par rapport à la température et à la pression s’écrit,

∂2G (T, p)

∂T ∂p
=

∂

∂T

(
∂G (T, p)

∂p

)
=
∂V (T, p)

∂T
=
V (T, p)

T



Abricotiers arrosés pour résister au gel 5

Par conséquent, l’énergie libre de Gibbs est une fonction concave de la
température et de la pression,

∂2G (T, p)

∂T 2

∂2G (T, p)

∂p2
−
(
∂2G (T, p)

∂T ∂p

)2

= c
V 2 (T, p)

T 2
> 0

6.5 Abricotiers arrosés pour résister au gel

Des fleurs d’abricotiers couvertes de glace sont modélisées par un cube
de glace. On suppose que les fleurs ont une masse et une capacité thermique
négligeables. Étant donné que les fleurs se trouvent piégées dans la glace, elles
sont à l’équilibre thermique avec la glace. Afin de protéger les fleurs d’abricotiers
du gel, les arboriculteurs aspergent leurs arbres avec de l’eau. On va donc
supposer qu’il y a une couche d’eau sur la glace (fig. 6.1). En tout temps, il y
a alors coexistence d’eau et de glace à l’équilibre chimique et thermique à la
température de fusion Tf de la glace. De plus, on suppose qu’il y a du gel, ce
qui signifie que l’air est plus froid que les fleurs recouvertes de glace. L’air a
une pression p ext constante et une température T ext = Tf − ∆T constante.

Fig. 6.1 Fleurs d’abricotiers piégées dans un cube de glace recouvert d’eau. Le transfert
de chaleur de la glace à température Tf vers l’air à température Tf − ∆T est décrit par
le courant de chaleur IQ qui passe à travers la couche d’eau d’aire A, d’épaisseur ` et de
conductivité thermique κ.

On modélise la couche d’eau comme une paroi de conductivité thermique κ,
d’aire latérale A et d’épaisseur ` entre le bloc de glace et l’air. On considère que
l’évaporation de l’eau est négligeable. Au temps t, le bloc de glace est constitué
de Ns (t) moles de glace et la couche d’eau de N` (t) moles d’eau. On cherche
à déterminer l’intervalle de temps ∆t durant lequel le système formé de glace
et d’eau peut rester à la température de fusion de la glace Tf avant que toute
l’eau ait été transformée en glace, c’est-à-dire N` (∆t) = 0. On suppose que la
décroissance du nombre de moles d’eau est linéaire durant l’intervalle de temps
∆t. Pour un temps t > ∆t, la glace se refroidit et sa température tend alors
vers la température T ext = Tf − ∆T de l’air qui joue le rôle de réservoir de
chaleur. En arrosant leurs abricotiers, les arboriculteurs cherchent à éviter un
tel refroidissement afin de préserver les fleurs du gel.
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1) Expliquer pourquoi la température de fusion de la glace Tf est constante.

2) Déterminer le courant de chaleur IQ de la glace vers l’air à travers la couche
d’eau à l’aide de la loi de Fourier (3.22).

3) Déterminer le nombre de moles d’eau N` (t) comme fonction du temps
t 6 ∆t en termes du courant de d’eau I`.

4) Exprimer le courant de chaleur IQ en fonction de la chaleur latente molaire
de fusion de la glace `s→`.

5) Déterminer l’intervalle de temps ∆t durant lequel il y a coexistence d’eau
et de glace.

6) Dans le cas où les fleurs d’abricotiers ne sont recouvertes ni de glace ni d’eau,
déterminer l’évolution de la température T (t) des fleurs, qu’on modélise
comme des solides formés de N ′ moles de matière, de surface A′, d’épaisseur
`′ et de conductivité thermique κ et évaluer numériquement le temps de
thermalisation,

τ =
3N ′R

A′
`′

κ′

Application numérique

N` (0) = 5 · 10−2 mol, A = 2 cm2, ``→g = 4 · 104 J mol−1, ∆T = 5 K
κ/` = κ′/`′ = 40 W K−1 m−2, N ′ = 1 · 10−2 mol, A′ = 1 cm2.

6.5 Solution

1) Dans le problème résolu (6.4), la courbe de coexistence de phase entre
l’eau et glace a été illustrée sur le diagramme (p, T ) (fig. 6.2). Cette courbe
montre que la température de fusion Tf est déterminée par la pression p
du mélange d’eau et de glace. Compte tenu du fait que le système formé de
la glace et de l’eau est à l’équilibre mécanique avec l’air qui joue le rôle de
réservoir de travail, c’est-à-dire p = p ext = cste, la température de fusion
Tf est constante durant le transfert de chaleur entre le système et l’air.

2) On considère que le système isolé constitué de sous-systèmes, la glace et
l’air, séparés par la couche d’eau qui est une paroi d’aire A d’épaisseur ` et
de conductivité thermique κ. Le transfert de chaleur de la glace à tem-
pérature Tf vers l’air à température Tf − ∆T est décrit par la loi de
Fourier (3.22),

IQ = κ
A

`
∆T > 0

3) Étant donné que la décroissance du nombre de moles d’eau est linéaire
durant l’intervalle de temps ∆t, on en déduit que,

N` (t) = N` (0) + I` t

où le courant d’eau I` = Ṅ` < 0 est constant. Après un intervalle de temps
∆t, l’eau a complètement gelé. On en conclut donc que,

N` (∆t) = N` (0) + I` ∆t = 0
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Par conséquent,

∆t = − N` (0)

I`
> 0

4) Lorsque l’eau gèle, elle se transforme intégralement en glace,

I` = − Is < 0

Par conséquent, le courant de chaleur s’écrit,

IQ = `s→` Is = − `s→` I`

5) L’intervalle de temps ∆t durant lequel il y a coexistence d’eau et de glace
est donc exprimé en termes du courant de chaleur comme,

∆t = N` (0)
`s→`

IQ

À l’aide de la loi de Fourier, l’intervalle de temps ∆t devient,

∆t = N` (0)
``→s

κ

`
A∆T

= 50 · 103 s ' 14 h

6) L’énergie interne de chaque fleur considérée comme un solide formé de N
moles de matière s’écrit,

U = 3N ′RT = 3N ′R
(
T ext + ∆T

)
Ainsi, la dérivée temporelle de l’énergie interne est,

U̇ = 3N ′R Ṫ = 3N ′R∆Ṫ

Ainsi, le premier principe s’écrit,

U̇ = IQ

La loi de Fourier (3.22) décrit le transfert de chaleur entre la fleur et l’air,

IQ = −κ A
`

∆T < 0

Ainsi, le premier principe devient,

3N ′R∆Ṫ = −κ′ A
′

`′
∆T

Compte tenu du temps d’amortissement thermique, cette équation diffé-
rentielle est mise sous la forme suivante,

d (∆T )

∆T
= − A′

3N ′R

κ′

`′
dt =

dt

τ
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L’intégration de cette équation du temps t′ = 0 au temps t′ = t s’écrit,∫ ∆T (t)

∆T (0)

d (∆T ′ (t′))

∆T ′ (t′)
= − 1

τ

∫ t

0

dt′

La solution de cette intégrale est,

ln

(
∆T (t)

∆T (0)

)
= − t

τ

Par conséquent,

∆T (t) = ∆T (0) exp

(
− t

τ

)
Ainsi, la température de la fleur tend exponentiellement vers la température
de l’air,

T (t) = T ext + ∆T (0) exp

(
− t

τ

)
La valeur numérique du temps de thermalisation est,

τ =
3N ′R

A′
`′

κ′
= 62 s

Le temps de thermalisation τ = 62 s des fleurs dans l’air en absence d’eau
et de glace est donc inférieur d’environ trois ordres de grandeur à l’inter-
valle de temps ∆t ' 14 h durant lequel les fleurs sont préservées du gel en
étant maintenues à la température de fusion de la glace grâce à la tech-
nique d’arrosage. Cette technique est donc très efficace pour permettre aux
abricotiers de résister à une nuit de gel au début du printemps.

6.9 Modèle de coexistence de phases

On modélise la coexistence de phases d’une solution liquide conte-
nant deux substances à une pression donnée. Soit NA le nombre de moles de
substance A et NB le nombre de moles de substance B. On définit la concen-
tration de la substance A comme c = NA/ (NA +NB) où 0 6 c 6 1. L’énergie
libre de Gibbs est donnée par l’expression,

G (T,NA, NB) = NART ln

(
NA

NA +NB

)
+NB RT ln

(
NB

NA +NB

)
+

NANB

NA +NB
∆U

où ∆U > 0 est une énergie d’interaction entre les substances et les deux pre-
miers termes trouveront une justification au chapitre 8

(1)
. La condition globale

de stabilité requiert que l’énergie libre de Gibbs du système G (T,NA, NB) soit
une fonction convexe des variables extensives NA et NB .

(1)
Peter Atkins, Julio de Paula, Atkins’ Physical Chemistry, Oxford University Press, 2002,
chap. 6, p. 186.
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1) Étudier le comportement de la fonction sans dimension g (β, c) =
G (T,NA, NB) / (RT (NA +NB)) en termes des paramètres sans dimen-
sion c et β = ∆U/RT > 0.

2) Esquisser le graphique de la fonction g (β, c) où 2 < β 6 4 ln (2) est
constant.

3) Montrer que si 2 < β 6 4 ln (2), il existe un domaine de concentration c
où le système se sépare en deux phases. Déterminer les proportions r1 et
r2 des phases 1 et 2 en fonction de la concentration c et des concentrations
c0 et 1− c0 des minima de la fonction g (β, c).

6.9 Solution

1) La fonction sans dimension g (β, c) s’écrit,

g (β, c) = c ln (c) + (1− c) ln (1− c) + β c (1− c)

où la concentration 0 6 c 6 1. La fonction g (β, c) est symétrique par
rapport à c = 1/2 ∀ β. On peut vérifier ceci analytiquement en montrant
que la fonction g (β, c) est invariante lorsque l’on remplace c par 1 − c et
vice versa. La fonction g (β, c) s’annule lorsque c→ 0 et c→ 1,

lim
c→0

g (β, c) = lim
c→0

ln
(
cc (1− c)

1− c
)

= 0

lim
c→1

g (β, c) = lim
c→1

ln
(
cc (1− c)

1− c
)

= 0

La dérivée première de la fonction g (β, c) par rapport à c est donnée par,

dg

dc
(β, c) = ln (c)− ln (1− c) + β (1− 2 c)

ce qui implique que,

lim
c→1/2

dg

dc
(β, c) = 0

Par conséquent, la fonction g (β, c) est extrémale si c = 1/2 ∀ β. La dérivée
seconde de la fonction g (β, c) par rapport à c est donnée par,

d2g

dc2
(β, c) =

1

c
+

1

1− c
− 2β

ce qui implique que,

lim
c→1/2

d2g

dc2
(β, c) = 2 (2− β)

Par conséquent, si 0 < β < 2, le point g (β, 1/2) est un minimum et si
β > 2, le point g (β, 1/2) est un maximum. De plus,

lim
c→1/2

g (β, c) = ln

(
1

2

)
+
β

4
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Ainsi, si β = 4 ln (2), alors g (β, 1/2) = 0. Par conséquent, si 2 < β 6
4 ln (2), la fonction g (β, c) 6 0 ∀ 0 6 c 6 1. De plus, cette fonction a un
maximum en c = 1/2. Donc, il doit exister deux minima symétriques par
rapport à c = 1/2 (fig. 6.2). Nous noterons les concentrations de ces minima
c0 et 1 − c0 où c0 < 1/2. Ces minima sont une fonction de β. L’ensemble
de ces minima, obtenus en variant β, constitue la courbe de saturation.

2) Le graphique de la fonction g (β, c) pour 0 6 c 6 1 est esquissé pour β = 2.5
(fig. 6.2).

1.0

g

Fig. 6.2 La fonction g (β, c) pour 0 6 c 6 1 et β = 2.5 a deux minima symétriques en c0 et
1 − c0.

3) La condition globale de stabilité de l’énergie libre de Gibbs requiert que
la fonction g (β, c) soit une fonction convexe de c. Pour une concentration
c 6 c0 ou c > 1 − c0, le modèle est stable. Dans ce cas, la solution est
constituée d’une seule phase contenant les substances A et B. Pour une
concentration c0 < c < 1− c0, le modèle est instable. Cette instabilité est
due au fait que la solution est constituée de deux phases contenant chacune
les substances A et B. On dit alors qu’il y a ségrégation de phases pour
exprimer le fait qu’elles sont localisées dans différentes régions de l’espace.
Pour une concentration c 6 c0, seule la phase 1 contenant le soluté A en
solution dans le solvant B existe et pour une concentration c > 1 − c0,
seule la phase 2 contenant le soluté B en solution dans le solvant A existe.
Pour une concentration c0 < c < 1− c0, la proportion r1 de la phase 1 et
la proportion r2 = 1− r1 de la phase 2 varient linéairement entre 0 et 1 le
long du segment qui relie les deux minima quand c varie,

r1 =
(1− c0)− c

1− 2 c0
et r2 =

c− c0
1− 2 c0

Cette variation linéaire s’appelle la règle du levier pour la raison suivante.
On considère que le point c sur l’axe est le point d’appui d’une barre de
longueur c− c0 à gauche et de longueur (1− c0)− c à droite. On accroche
à l’extrémité gauche de cette barre un poids dont la norme est la fraction r1

d’un poids de référence. À l’extrémité droite, on accroche un poids dont la
norme est la fraction r2 de ce poids de référence. On choisit le poids de réfé-
rence tel que la condition r1 +r2 = 1 soit satisfaite. La condition d’équilibre
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mécanique de ce levier s’écrit alors r1 (c− c0) = r2 ((1− c0)− c). Compte
tenu de ces deux conditions, on trouve alors les expressions données ci-
dessus pour r1 et r2.

6.11 Température de fusion de l’eau salée

On considère un bloc de glace en équilibre avec de l’eau salée. Le
potentiel chimique µs (T ) de la glace dépend de la température T et le poten-
tiel chimique de l’eau salée µ` (T, 1− c) dépend de la température T et de la
concentration de sel c d’après le modèle suivant,

µ` (T, 1− c) = µ` (T ) +RT ln (1− c)

où 1 − c est la concentration d’eau douce. Cette équation sera justifiée au
chapitre 8. Déterminer la variation ∆T de la température de fusion de l’eau
par rapport à la température de fusion Tf de l’eau douce en fonction de la
concentration de sel c et de la chaleur latente de fusion `s→`, dans la limite
c� 1 et ∆T � Tf .

6.11 Solution

Pour de l’eau douce, c’est-à-dire c = 0, l’équilibre chimique entre l’eau et la
glace à la température de fusion Tf s’écrit,

µs (Tf ) = µ` (Tf )

Pour l’eau salée, c’est-à-dire c > 0, l’équilibre chimique entre l’eau salée et la
glace à la température de fusion Tf + ∆T s’écrit,

µs (Tf + ∆T ) = µ` (Tf + ∆T, 1− c)

Ainsi,

µs (Tf + ∆T ) = µ` (Tf + ∆T ) +R (Tf + ∆T ) ln (1− c)

Dans la limite c� 1, cette expression se réduit au 1er ordre en c à,

µs (Tf + ∆T ) = µ` (Tf + ∆T )− R (Tf + ∆T ) c

car ln (1− c) = − c + O
(
c2
)
. Compte tenu de l’expression (6.77) de la dif-

férentielle du potentiel chimique d’une phase, dans la limite ∆T � Tf , les
développements limités des potentiels chimiques µ` (Tf + ∆T ) et µs (Tf + ∆T )
au 1er ordre en ∆T/Tf s’écrivent,

µ` (Tf + ∆T ) = µ` (Tf ) +
∂µ`

∂T
∆T

µs (Tf + ∆T ) = µs (Tf ) +
∂µs

∂T
∆T



12 Transitions de phase

Les équations de Gibbs-Duhem molaires (6.77) des phases liquide et solide
s’écrivent,

dµ` = − s` dT + v` dp

dµs = − ss dT + vs dp

Ainsi, les dérivées partielles des potentiels chimiques sont de la forme suivante,

∂µ`

∂T
= − s` et

∂µs

∂T
= − ss

et les potentiels chimiques µ` (Tf + ∆T ) et µs (Tf + ∆T ) sont exprimés en
termes des entropies molaires comme,

µ` (Tf + ∆T ) = µ` (Tf )− s` ∆T

µs (Tf + ∆T ) = µs (Tf )− ss ∆T

Par conséquent, l’équation d’équilibre chimique entre l’eau salée et la glace à
la température de fusion Tf + ∆T au 1er ordre en c devient,

µs (Tf )− ss ∆T = µ` (Tf )− s` ∆T − R (Tf + ∆T ) c

Compte tenu de l’équilibre chimique entre la glace et l’eau douce à la tempéra-
ture de fusion Tf , c’est-à-dire µs (Tf ) = µ` (Tf ), l’équation précédente se réduit
à,

− ss ∆T = − s` ∆T − RTf

(
1 +

∆T

Tf

)
c

ce qui implique que dans la limite ∆T � Tf ,

∆T = − RTf c

s` − ss

À l’aide de la définition (6.68) de la chaleur latente de fusion `s→`, la variation
de température s’écrit comme,

∆T = −
RT 2

f c

`s→`
< 0

Par conséquent, la température du point de fusion de l’eau salée diminue avec
la concentration de sel. Pour cette raison, on ajoute du sel sur une chaussée
enneigée ce qui abaisse la température de fusion et provoque la fonte de la
neige.


