CHAPITRE 6

Transitions de phase

6.1 Stabilité des potentiels thermodynamiques

Yok Afin de déterminer les criteres de stabilité locale des potentiels ther-
modynamiques du gaz parfait, on se base sur les expressions de la température,
de la pression et du volume établies dans I’exercice 4.7. Les expressions T' (S, V)
et T (S, p) de la température d’un gaz parfait sont,

TS, V)=T(S, W) <“//O>é

T(8,p) = (S, po) (;’)

et les expressions de la pression et du volume d’un gaz parfait sont,

S— 50
p(8.V) =S V)ew (2520
NRT
b

V(Tvp) =

ou le volume Vj, la pression pg et ’entropie Sy sont des constantes.

1) Montrer que la courbure locale de 1’énergie interne est positive (6.23),

9°U (8,V) *U(S,V)  (9°U (S, V)" 0
052 ov? S oV

2) Mountrer que la courbure locale de I’énergie libre est négative (6.41),

O°F (T,V) 0°F (I,V)  (9*F(T,V)\” .
oT? V2 aT oV

3) Montrer que la courbure locale de 'enthalpie est négative (6.44),

0°H (S,p) *H (S,p)  (9°H(S.p)\’ “0
052 Op? 95 dp
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4) Montrer que la courbure locale de 1’énergie libre de Gibbs est positive (6.47),

PC(I.p) PC(Tp)  (PC(Tp)\ _
o012 op? oT Op

Solution

1) Compte tenu de la température (2.16) et de la capacité thermique iso-
chore (5.10) pour un gaz parfait (5.75), la courbure locale de énergie
interne par rapport a l’entropie s’écrit,

82U(S7V)_8T(S,V)_T(S7V)_T(S7V)>0
882 ~  9S Cy  ¢NR

Compte tenu de la pression (2.17) et du coefficient de compressibilité isen-
tropique (5.52) pour un gaz parfait (5.88), la courbure locale de ’énergie
interne par rapport au volume s’écrit,

02U (S,V) _ 9p(SV) 1 c+1p(SV)

awvr o v e v 0

Ainsi, a I'aide de ’équation d’état du gaz parfait (5.66),
p(S,V)V =NRT (S,V)

le produit des courbures locales de 1’énergie interne par rapport a 'entropie
et au volume s’écrit,

02U (S,V) QU (S,V) _c+1p(S,V)
052 av: & NRV

c+1T?%(S,V)
2 V2

T(S,V)=

Compte tenu de la température (2.16), la dérivée partielle seconde de I’éner-
gie interne par rapport a l’entropie et au volume s’écrit,

QU (S, V) o8 [(dU(S,V)\ OT(S,V) 0 V¢
95 oV :av< 95 )z v :av<T(S’V0)(> )

et se réduit a,

U (S, V) 11 vV F) 1 T(SV)
‘%@v——cv<T@ww(%) )——cx/

Par conséquent, I’énergie interne est une fonction convexe de I’entropie et
du volume,

92U (S,V) &*U (S,V) (82U(S, V))2 _1T2(S,V)

952 BYE asav ) ¢ vz 0
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Compte tenu de I'entropie (4.25) et de la capacité thermique isochore (5.10)
pour un gaz parfait (5.75), la courbure locale de I’énergie libre par rapport
a la température s’écrit,

O?F (T, V) 775‘5(T,V) GOy c¢NR <0

oT? N oT T T

Compte tenu de la pression (4.26) et du coeflicient de compressibilité iso-
therme (5.12) pour un gaz parfait (5.80), la courbure locale de Iénergie
libre par rapport au volume s’écrit,

PF(TV) _ 9p(T,V) 1 p(T,V)

V2 v xrV vV

>0

Ainsi, a l'aide de I"équation d’état du gaz parfait (5.66),
p(T,V)V = NRT

le produit des courbures locales de 1’énergie libre par rapport a la tempé-
rature et au volume s’écrit,

OF%(T,V) OF?(F,V) _cNRp (T,V) p? (T,V)

a1? ov? TV T
Compte tenu de la pression (4.26), la dérivée partielle seconde de I’énergie
libre par rapport a l’entropie et au volume s’écrit,
O*F(T,V) 0 <8F(T,V)> _ op(T,V)  p(T,V)

orov —  oT oV

oT T

Par conséquent, ’énergie libre est une fonction concave de la température
et convexe du volume,
i P (T.V)

T2

<0

O°F (I,V) &*F (I,V)  (&*F (T,V)
oT? ov? T OV

Compte tenu de la température (4.33) et de la capacité thermique iso-
bare (5.22) pour un gaz parfait (5.83), la courbure locale de ’enthalpie par
rapport a ’entropie s’écrit,

O*H (S,p) _ 9T (S,p) _T(S.p) _ T (S,p)

952~ 95 ¢, (+nnNr "

Compte tenu du volume (4.34) et du coefficient de compressibilité isentro-
pique (5.52) pour un gaz parfait (5.88), la courbure locale de Ienthalpie
par rapport a la pression s’écrit,

0°H (S,p) _ OV (S,p) c V(Sp)

=—xsV =— <0
op? Op Xs c+1 p

Ainsi, & laide de ’équation d’état du gaz parfait (5.66),
pV (S,p) = NRT (S,p)
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le produit des courbures locales de I’enthalpie par rapport a I’entropie et a
la pression s’écrit,

0*H (S,p) 9°H (S, p) T(S,p) cV(Sp) ¢ T*(Sp)

05° op? (c+1)NR (c+1)p (c+1)* p?

Compte tenu de la température (4.33), la dérivée partielle seconde de I'en-
thalpie par rapport a I’entropie et a la pression s’écrit,

OH(S,p) _ 0 (OH(S,p)) _9T(Sp) _ 0 (g (P i

et se réduit a,

OPH(Sp) 1 1 P\ 1 T(Sp)
dSdp  c+1p T(S’p0)<po> T e+41 P

Par conséquent, ’enthalpie est une fonction convexe de ’entropie et concave
de la pression,

<0

0°H (S,p) 0°H (S,p)  (O*H(S,p)\* 1 T2(S,p)
052 Op? 0S Op  c+1 p?

Compte tenu de l'entropie (4.41) et de la capacité thermique isobare (5.22)
pour un gaz parfait (5.83), la courbure locale de I’énergie libre de Gibbs
par rapport a la température s’écrit,

9*G(T,p) _98(T,p) _ Cp  (c+1)NR <0
or: or T T
Compte tenu du volume (4.42) et du coefficient de compressibilité iso-
therme (5.12) pour un gaz parfait (5.80), la courbure locale de Iénergie
libre de Gibbs par rapport a la pression s’écrit,

O*G(Tp) _ oV (Tip) _ ., _ V(Ip)
o> op M7 T p

<0

Ainsi, & laide de ’équation d’état du gaz parfait (5.66),
pV(T,p)=NRT

le produit des courbures locales de 1’énergie libre de Gibbs par rapport a
la température et a la pression s’écrit,
G (T,p) 0*°G(T,p) _ (c+1)NR V(T,p) V2(T,p)
2 2 = =(c+1) —5—
oT dp T D T

Compte tenu du volume (4.42), la dérivée partielle seconde de ’énergie libre
de Gibbs par rapport a la température et a la pression s’écrit,

PG (T,p) _ 9 <<’9G(T7p)> _ov(T,p) _V(T.,p)

oTdp — oT dp

oT T
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Par conséquent, ’énergie libre de Gibbs est une fonction concave de la
température et de la pression,

9°G(T.p) &G (T.p) (aﬂ’amp))? _.ran

o1? Op? oT Op T2

6.5 Abricotiers arrosés pour résister au gel

Yvok  Des fleurs d’abricotiers couvertes de glace sont modélisées par un cube
de glace. On suppose que les fleurs ont une masse et une capacité thermique
négligeables. Etant donné que les fleurs se trouvent piégées dans la glace, elles
sont & 1’équilibre thermique avec la glace. Afin de protéger les fleurs d’abricotiers
du gel, les arboriculteurs aspergent leurs arbres avec de l’eau. On va donc
supposer qu’il y a une couche d’eau sur la glace (fig. 6.1). En tout temps, il y
a alors coexistence d’eau et de glace a ’équilibre chimique et thermique a la
température de fusion T de la glace. De plus, on suppose qu’il y a du gel, ce
qui signifie que ’air est plus froid que les fleurs recouvertes de glace. L’air a
une pression p** constante et une température T °** = Ty — AT constante.

[Q Ty — AT g

A A A air
Ty N, ¢ K eau
Ty N, glace

Fig. 6.1 Fleurs d’abricotiers piégées dans un cube de glace recouvert d’eau. Le transfert
de chaleur de la glace & température Ty vers l'air a température Ty — AT est décrit par
le courant de chaleur I qui passe a travers la couche d’eau d’aire A, d’épaisseur £ et de
conductivité thermique k.

On modélise la couche d’eau comme une paroi de conductivité thermique k,
d’aire latérale A et d’épaisseur £ entre le bloc de glace et I’air. On considere que
I’évaporation de I’eau est négligeable. Au temps ¢, le bloc de glace est constitué
de N (t) moles de glace et la couche d’eau de Ny () moles d’eau. On cherche
a déterminer l'intervalle de temps At durant lequel le systéeme formé de glace
et d’eau peut rester a la température de fusion de la glace T avant que toute
Peau ait été transformée en glace, c’est-a-dire Ny (At) = 0. On suppose que la
décroissance du nombre de moles d’eau est linéaire durant I'intervalle de temps
At. Pour un temps t > At, la glace se refroidit et sa température tend alors
vers la température T = Ty — AT de Dair qui joue le role de réservoir de
chaleur. En arrosant leurs abricotiers, les arboriculteurs cherchent a éviter un
tel refroidissement afin de préserver les fleurs du gel.
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Expliquer pourquoi la température de fusion de la glace T est constante.

Déterminer le courant de chaleur I de la glace vers Iair a travers la couche
d’eau a l'aide de la loi de Fourier (3.22).

Déterminer le nombre de moles d’eau Ny (t) comme fonction du temps
t < At en termes du courant de d’eau Ij.

Exprimer le courant de chaleur Ig en fonction de la chaleur latente molaire
de fusion de la glace £5_,.

Déterminer I'intervalle de temps At durant lequel il y a coexistence d’eau
et de glace.

Dans le cas ou les fleurs d’abricotiers ne sont recouvertes ni de glace ni d’eau,
déterminer I’évolution de la température 7' (¢t) des fleurs, qu’on modélise
comme des solides formés de N’ moles de matiere, de surface A’, d’épaisseur
¢ et de conductivité thermique s et évaluer numériquement le temps de
thermalisation,
3N'R V'
T W

Application numérique

Ny (0)=5-10"2mol, A =2 cm?, £y, =4-10* Jmol™ 1, AT =5 K
k=K /I'=40 WK™ m™2 N =1-10"2 mol, A’ =1 cm?.

Solution

1)

Dans le probleme résolu (6.4), la courbe de coexistence de phase entre
leau et glace a été illustrée sur le diagramme (p,T') (fig. 6.2). Cette courbe
montre que la température de fusion Ty est déterminée par la pression p
du mélange d’eau et de glace. Compte tenu du fait que le systéme formé de
la glace et de I'eau est a ’équilibre mécanique avec l’air qui joue le role de
réservoir de travail, c’est-a-dire p = p®** = cste, la température de fusion
T est constante durant le transfert de chaleur entre le systeme et 'air.

On considére que le systeme isolé constitué de sous-systemes, la glace et
I’air, séparés par la couche d’eau qui est une paroi d’aire A d’épaisseur ¢ et
de conductivité thermique k. Le transfert de chaleur de la glace a tem-
pérature Ty vers 'air & température Ty — AT est décrit par la loi de
Fourier (3.22),

IQZH%AT>O

Etant donné que la décroissance du nombre de moles d’eau est linéaire
durant l'intervalle de temps At, on en déduit que,

Ny (t) =Ny (0) + Iyt

ot le courant d’eau I; = Ny < 0 est constant. Apres un intervalle de temps
At, eau a completement gelé. On en conclut donc que,

Ny (At) =Ny (0)+ I, At =0
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Par conséquent,
N (0)
I

Lorsque 'eau gele, elle se transforme intégralement en glace,

At = >0
I, =—1,<0
Par conséquent, le courant de chaleur s’écrit,
Ig="ls syl =—"Lsso Iy

L’intervalle de temps At durant lequel il y a coexistence d’eau et de glace
est donc exprimé en termes du courant de chaleur comme,

At = N (0) boort
Iq

N

A T’aide de la loi de Fourier, I'intervalle de temps At devient,

Loss
At = N, (0) —22 =50-10%s ~ 14h

K
—AAT
4

L’énergie interne de chaque fleur considérée comme un solide formé de N
moles de matiere s’écrit,

U=3N'RT=3N'R (TCXt + AT)
Ainsi, la dérivée temporelle de ’énergie interne est,
U=3N'RT =3N'RAT

Ainsi, le premier principe s’écrit,

U=1I,

La loi de Fourier (3.22) décrit le transfert de chaleur entre la fleur et Dair,

A

Ainsi, le premier principe devient,
. A’
SN'RAT = — &’ WAT

Compte tenu du temps d’amortissement thermique, cette équation diffé-
rentielle est mise sous la forme suivante,
d (AT) A K dt

AT~ sveeYTT
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L’intégration de cette équation du temps ¢’ = 0 au temps ¢’ = ¢ s’écrit,

/AT(t) d (AT/ (t/)) o 1 /t dt/
ar@y AT (Y) T Jo

La solution de cette intégrale est,
I AT (t) _t
AT (0) T

AT (t) = AT (0) exp <— i)

Ainsi, la température de la fleur tend exponentiellement vers la température
de lair,

Par conséquent,

T (t) =T 4+ AT (0) exp (— i)

La valeur numérique du temps de thermalisation est,

Le temps de thermalisation 7 = 62s des fleurs dans ’air en absence d’eau
et de glace est donc inférieur d’environ trois ordres de grandeur a l’inter-
valle de temps At ~ 14h durant lequel les fleurs sont préservées du gel en
étant maintenues a la température de fusion de la glace grace a la tech-
nique d’arrosage. Cette technique est donc tres efficace pour permettre aux
abricotiers de résister a une nuit de gel au début du printemps.

6.9 Modele de coexistence de phases

Yook On modélise la coexistence de phases d’'une solution liquide conte-
nant deux substances a une pression donnée. Soit N4 le nombre de moles de
substance A et Np le nombre de moles de substance B. On définit la concen-
tration de la substance A comme ¢ = N4/ (N + Np) ot 0 < ¢ < 1. L'énergie
libre de Gibbs est donnée par I'expression,

NA NB
G(T,No,Ng)=NoARTln| ————— NgRTIn | ————
( A B) A n(NA+NB>+ B n(NA+NB>

y NalNp \pr
Na+ Np
ou AU > 0 est une énergie d’interaction entre les substances et les deux pre-
miers termes trouveront une justification au chapitre 8. La condition globale
de stabilité requiert que 1’énergie libre de Gibbs du systéme G (T, N4, Ng) soit
une fonction convexe des variables extensives N et Np.

M Peter Atkins, Julio de Paula, Atkins’ Physical Chemistry, Oxford University Press, 2002,
chap. 6, p. 186.



1)

Modele de coexistence de phases 9

Etudier le comportement de la fonction sans dimension g (B,e) =
G(T,Na,Np)/(RT (Na+ Np)) en termes des parametres sans dimen-
sion cet §=AU/RT > 0.

Esquisser le graphique de la fonction ¢ (8,¢) ot 2 < 8 < 41n(2) est
constant.

Montrer que si 2 < 8 < 4 In(2), il existe un domaine de concentration ¢
ou le systeme se sépare en deux phases. Déterminer les proportions r; et
ro des phases 1 et 2 en fonction de la concentration ¢ et des concentrations
¢o et 1 — ¢o des minima de la fonction g (8, ¢).

Solution

D

La fonction sans dimension g (3, ¢) s’écrit,
9(B,0) =cln(@) +(1— (1 — ¢+ fe(l— o

ou la concentration 0 < ¢ < 1. La fonction ¢ (3,c¢) est symétrique par
rapport & ¢ = 1/2 ¥V 8. On peut vérifier ceci analytiquement en montrant
que la fonction g (8, ¢) est invariante lorsque I'on remplace ¢ par 1 — ¢ et
vice versa. La fonction g (8, ¢) s’annule lorsque ¢ — 0 et ¢ — 1,

lim g (8,¢) = lim In (CC (1- c)l_c) =0
c—0 c—0
lim g (8,¢) = lim In (cc (1- c)l_c) =0
c—1 c—1
La dérivée premiere de la fonction g (3, ¢) par rapport & ¢ est donnée par,

Y B =) -~ + (- 20)

ce qui implique que,

lim d—g
e—1/2 dc

(B,¢) =0

Par conséquent, la fonction g (8, ¢) est extrémale si ¢ = 1/2 V 3. La dérivée
seconde de la fonction g (3, ¢) par rapport a ¢ est donnée par,

d?g 1 1
_— = — — 2
dC2 (57 C) c + 1 —c ﬁ
ce qui implique que,
d?g
li — =2(2-
i e (B,¢) =2(2- )

Par conséquent, si 0 < f < 2, le point ¢g(3,1/2) est un minimum et si
B > 2, le point g (8,1/2) est un maximum. De plus,

1
c1—i>r1r}2 9(B,¢)=1n (2) + g
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Ainsi, si 8§ = 4 1In(2), alors ¢g(8,1/2) = 0. Par conséquent, si 2 < 8 <
4 1n (2), la fonction g (8,¢) < 0V 0 < ¢ < 1. De plus, cette fonction a un
maximum en ¢ = 1/2. Dong, il doit exister deux minima symétriques par
rapport a ¢ = 1/2 (fig. 6.2). Nous noterons les concentrations de ces minima
co et 1 — ¢p ot ¢y < 1/2. Ces minima sont une fonction de 8. L’ensemble
de ces minima, obtenus en variant 3, constitue la courbe de saturation.

2) Le graphique de la fonction g (3, ¢) pour 0 < ¢ < 1 est esquissé pour § = 2.5
(fig. 6.2).

9 A

0.0}

~0.05 f

—0.1F

Fig. 6.2 La fonction g (8,c) pour 0 < ¢ < 1 et 8 = 2.5 a deux minima symétriques en cp et
1— co.

3) La condition globale de stabilité de I’énergie libre de Gibbs requiert que
la fonction g (8, ¢) soit une fonction convexe de c. Pour une concentration
c < cgouc>=1-— ¢y, le modele est stable. Dans ce cas, la solution est
constituée d’une seule phase contenant les substances A et B. Pour une
concentration ¢y < ¢ < 1 — ¢g, le modele est instable. Cette instabilité est
due au fait que la solution est constituée de deux phases contenant chacune
les substances A et B. On dit alors qu'il y a ségrégation de phases pour
exprimer le fait qu’elles sont localisées dans différentes régions de I’espace.
Pour une concentration ¢ < ¢, seule la phase 1 contenant le soluté A en
solution dans le solvant B existe et pour une concentration ¢ > 1 — co,
seule la phase 2 contenant le soluté B en solution dans le solvant A existe.
Pour une concentration ¢y < ¢ < 1 — ¢g, la proportion r; de la phase 1 et
la proportion 7o = 1 — r; de la phase 2 varient linéairement entre 0 et 1 le
long du segment qui relie les deux minima quand c varie,

741:(1700)—0 ot 7nz:c—co

1—2 Co 1—2 Co
Cette variation linéaire s’appelle la régle du levier pour la raison suivante.
On considere que le point ¢ sur 'axe est le point d’appui d’une barre de
longueur ¢ — ¢ & gauche et de longueur (1 — ¢p) — ¢ & droite. On accroche
a 'extrémité gauche de cette barre un poids dont la norme est la fraction rq
d’un poids de référence. A Dextrémité droite, on accroche un poids dont la
norme est la fraction ro de ce poids de référence. On choisit le poids de réfé-
rence tel que la condition 71 +7r9 = 1 soit satisfaite. La condition d’équilibre
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mécanique de ce levier s’écrit alors 71 (¢ — ¢g) = r2 ((1 — ¢p) — ¢). Compte
tenu de ces deux conditions, on trouve alors les expressions données ci-
dessus pour rq et rs.

6.11 Température de fusion de 1’eau salée

Yok On considere un bloc de glace en équilibre avec de 'eau salée. Le
potentiel chimique pg (T') de la glace dépend de la température T' et le poten-
tiel chimique de l'eau salée pp (T,1 — ¢) dépend de la température T et de la
concentration de sel ¢ d’apres le modele suivant,

e (T,1—¢)=pe(T)+ RTIn(1— ¢)

ou 1 — ¢ est la concentration d’eau douce. Cette équation sera justifiée au
chapitre 8. Déterminer la variation AT de la température de fusion de I'eau
par rapport a la température de fusion Ty de I’eau douce en fonction de la
concentration de sel ¢ et de la chaleur latente de fusion ¢,_,,, dans la limite
clet AT < Ty.

Solution

Pour de I'eau douce, c’est-a-dire ¢ = 0, 1’équilibre chimique entre ’eau et la
glace a la température de fusion Tt s’écrit,

ps (Ty) = pe (T)

Pour 'eau salée, c’est-a-dire ¢ > 0, I’équilibre chimique entre ’eau salée et la
glace a la température de fusion Ty + AT s’écrit,

ps (T + AT) = po (Ty + AT, 1 = ¢)
Ainsi,
ps (Ty + AT) = puy (Ty + AT) + R(Ty + AT) In (1 = ¢)

Dans la limite ¢ < 1, cette expression se réduit au 1°" ordre en c a,
s (Ty +AT) = pe (Ty + AT) — R(Ty+ AT) c

car In(1— ¢) = —c+ O(c?). Compte tenu de D'expression (6.77) de la dif-
férentielle du potentiel chimique d’'une phase, dans la limite AT <« T%, les
développements limités des potentiels chimiques pp (T + AT) et ps (Ty + AT)
au 1°7 ordre en AT /Ty s’écrivent,

0
pe (Ty + AT) = o (Ty) + £ AT

Opis
Hs (Tf+AT) = Us (Tf)+ a/;-v AT
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Les équations de Gibbs-Duhem molaires (6.77) des phases liquide et solide
s’écrivent,

d,LJ,gZ*Sng‘F”U@dp
dus = —ssdIl 4+ vs dp

Ainsi, les dérivées partielles des potentiels chimiques sont de la forme suivante,

Olbe . Ous
T — Sy et

or — %
et les potentiels chimiques g (Ty + AT) et ps (Ty + AT) sont exprimés en
termes des entropies molaires comme,

pe (Ty + AT) = pe (Ty) — s AT

ps (T + AT) = ps (Ty) — 85 AT

Par conséquent, ’équation d’équilibre chimique entre I’eau salée et la glace a
la température de fusion Tt + AT au 1°" ordre en c devient,

ps (Tg) — ss AT = py (Ty) — se AT — R(Ty + AT) ¢

Compte tenu de I’équilibre chimique entre la glace et ’eau douce a la tempéra-
ture de fusion Ty, c’est-a-dire ps (Ty) = pe (T'f), ’équation précédente se réduit
a,

—5s AT = -5, AT — RTy <1+AT)C
Ty

ce qui implique que dans la limite AT < T¥%,

RTfC
Sp — Sg

AT =
A T’aide de la définition (6.68) de la chaleur latente de fusion £5_,¢, la variation
de température s’écrit comme,
B RTJ% c

Es—)f

AT = <0

Par conséquent, la température du point de fusion de I’eau salée diminue avec
la concentration de sel. Pour cette raison, on ajoute du sel sur une chaussée
enneigée ce qui abaisse la température de fusion et provoque la fonte de la
neige.



